If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=13Y^2-18
We move all terms to the left:
-(13Y^2-18)=0
We get rid of parentheses
-13Y^2+18=0
a = -13; b = 0; c = +18;
Δ = b2-4ac
Δ = 02-4·(-13)·18
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{26}}{2*-13}=\frac{0-6\sqrt{26}}{-26} =-\frac{6\sqrt{26}}{-26} =-\frac{3\sqrt{26}}{-13} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{26}}{2*-13}=\frac{0+6\sqrt{26}}{-26} =\frac{6\sqrt{26}}{-26} =\frac{3\sqrt{26}}{-13} $
| x+(-8)=9 | | 4t+2+4t-7t=4+6 | | y-4.1=6.5 | | 10(x-4)+3x=12 | | 9p+3=8p+5 | | 7x+3=-4+4x+25 | | s+8=9.6 | | j-3.1=4.8 | | 3x+3(x-3)=7x+23 | | 1440m+.035m+12.75=m | | 5=25+2n | | x+34=6+34=68 | | 5(d=7)-6 | | 4x2-3x=7 | | 1440m+.035m=12.75 | | 20=4/9u | | 0.04(y-2)+0.18y=0.02y-0.4 | | 2b−6= −4−4 | | x+x+32=44 | | 19z=38+6 | | 7/9c+1/3c=1/8 | | .9x=433/5 | | 150=21+0.30x | | .9x=3000/4 | | 4n−2+9n=93−6n | | A+x=52 | | 75,000=10,000(1.09)8x | | 0.4x+0.5=4.1 | | |y+1|=2y+3 | | 111+25=0.20x | | 5(x-2)+1=6(x+4)-7 | | 1000(6x-10=40(295+100x) |